Name: Period:	Date:	
1.5 – 1.6 Conditional Statements and Deductive Reasoning WS		
In questions 1-4, <u>underline the hypothesis</u> and <u>circle the conclusion</u> in each conditional statement. Then decide if the statement is TRUE or FALSE. If it is false, identify a counterexample.		
1. If a student at IHS has Geometry this year, then the student's teacher is Mrs. Karpenko.		
TRUE or FALSE If false, a counterexample is	·	
2. If the product of two whole numbers is even, then the two numbers were both even.		
TRUE or FALSE If false, a counterexample is	·	
3. A person has a fever if their body temperature is 103° F.		
TRUE or FALSE If false, a counterexample is	·	
4. If the sum of two whole numbers is odd, then one of the numbers is odd and the other is	even.	
TRUE or FALSE If false, a counterexample is	·	
In questions 5-7, write the converse of the given conditional statement. Then decide if TRUE or FALSE. If it is false, identify a counterexample or draw a picture of a counter		
5. If all three sides of a triangle have different lengths, then the triangle is scalene.		
Converse:		
TRUE or FALSE If false, a counterexample is		
6. Two rays share the same endpoint if they are opposite rays.		
Converse:		
TRUE or FALSE If false, a counterexample is		
7. Three points are collinear if they lie on the same plane.		
Converse:		
TRUE or FALSE If false, a counterexample is		

For questions 8-9, help order the steps someone took when correctly solving algebraic problems. Write a "1" to indicate the first step, a "2" for the second step, and so on.

8.
$$5x-18=3(x+2)$$

9. $4|2x+3|=36$
 $2x-18=6$
 $2x=24$
 $5x-18=3x+6$
 $5x-18=3(x+2)$

GIVEN

9. $4|2x+3|=36$
 $x=3 \text{ or } x=-6$
 $|2x+3|=9$
 $2x+3=9 \text{ or } 2x+3=-9$
 $2x=6 \text{ or } 2x=-12$
 $4|2x+3|=36$

GIVEN

CIVEN

For question 10, use the table below to fill in the missing steps and reasons of the deductive argument.

GIVEN

Algebraic Proof A list of algebraic steps to solve problems where each step is justified is called an **algebraic proof**, The table shows properties you have studied in algebra.

The following properties are true for any real numbers a, b, and c.

x = 12

Addition Property of Equality	If $a = b$, then $a + c = b + c$.	
Subtraction Property of Equality	If $a = b$, the $a - c = b - c$.	
Multiplication Property of Equality	If $a = b$, then $a \cdot c = b \cdot c$.	
Division Property of Equality	If $a = b$ and $c \neq 0$, then, $\frac{a}{c} = \frac{b}{c}$.	
Reflexive Property of Equality	a = a	
Symmetric Property of Equality If $a = b$ and $b = a$.		
Transitive Property of Equality	If $a = b$ and $b = c$, then $a = c$.	
Substitution Property of Equality	If $a = b$, then a may be replaced by b in any equation or expression.	
Distributive Property	a (b + c) = ab + ac	

10. $2(4x-6) = x+37$		
Step	Reason	
1. $2(4x-6) = x+37$	1. Given	
2.	2. Distributive Property	
3. $8x = x + 49$	3.	
4.	4.	
5.	5. Division Property of Equality	