Note: Assume all variables represent non-zero quantities.

For problems 1-6: Rewrite each expression using the properties of exponents. Simplify as much as possible, then write your final answer with rational exponents <u>without negative exponents</u>.

1.
$$\frac{m^4 n^{-3} p^{-1}}{m n^{-3} p^5}$$

$$2. \left(\frac{a^5b^{-3}c^2}{a^6b^9c^8}\right)^0$$

$$3. \quad \frac{\left(gh^5\right)^2 k^{-2}}{g^{-3} \left(h^{-1}k^4\right)^{-3}}$$

4.
$$\left(\frac{rt^{-2}s^3}{r^3t^{-2}s}\right)^{-2}$$

$$5. \quad 5x^{\frac{1}{3}} \left(x^{\frac{-2}{5}} y^{\frac{1}{4}} \right)^{\frac{-5}{2}}$$

6.
$$\left(\frac{9}{81^{\frac{4}{5}}}\right)^{\frac{1}{2}}$$

For problems 7-20: Simplify each radical expression, using absolute value bars when necessary. Write your answer in <u>reduced radical form</u>.

7.
$$\sqrt[5]{32x^{15}y^8}$$

8.
$$\sqrt{48p^{17}q^8}$$

9.
$$\sqrt[4]{192x^5y^8}$$

10.
$$\sqrt[3]{\frac{24}{9m^5}}$$

11.
$$\sqrt[3]{\frac{a^7b^3}{125a}}$$

12.
$$\frac{12}{\sqrt{18x^4y^9}}$$

13.
$$\frac{-4x}{1-\sqrt{x}}$$

14.
$$\frac{5-\sqrt{2}}{2-\sqrt{3}}$$

15.
$$\sqrt[3]{4a^2b} \cdot \sqrt[3]{10a^5b^2}$$

16.
$$-2\sqrt{45} - 3\sqrt{20} - 2\sqrt{6}$$

17.
$$-3\sqrt[3]{-3} + 2\sqrt[3]{162} + 3\sqrt[3]{81}$$

18.
$$3\sqrt{3}(4-3\sqrt{5})$$

19.
$$(2\sqrt{x}+2)(\sqrt{x}+3)$$

20.
$$(\sqrt{3} + \sqrt{5x})(\sqrt{4} - 5\sqrt{x})$$

- **21.** The length of a large storage box is $3x + \sqrt{48}$ cm and the width is $5 + \sqrt{12x}$.
 - **a.** Write an expression that represents the perimeter of the field.
 - **b.** Write an expression that represents the area of the field.