3.1 Ref	lections				
Transformation: an operation that changes an original object, called a, into a					
resulting object, called an					
We can transform points, shapes, and even functions!					
Rigid Motion: a transformation that preserves					
1. a. Is the transformation a rigid motion? Explain.	1. b. Is the transformation a rigid motion? Explain.				
preimage image	preimage image				
Reflection:					

A reflection has these properties:

- If a point A is on line m, then the point and its image are the same point (that is, A' = A).
- If a point B is not on line m, line m is the perpendicular bisector of $\overline{BB'}$.

The reflection of $\triangle ABC$ across line m can be written as $R_m(\triangle ABC) = \triangle A'B'C'$.

Example: Quadrilateral *FGHJ* has coordinates F(0,3),G(2,4),H(4,2),J(-2,0).

A. Graph and label **FGHJ** and x-axis(**FGHJ**). What is a general rule for reflecting a point across the x-axis?

B. What do you think is a general rule for reflecting a point across the y-axis?

3.2 Translations

Translation:

The translation of $\triangle ABC$ by x units along the x-axis and by y units along the y-axis can be written as $T_{\langle X, y \rangle}(\triangle ABC) = \triangle A'B'C'$.

A translation has the following properties:

If
$$T_{\langle X, Y \rangle}$$
 ($\triangle ABC$) = $\triangle A'B'C'$, then

- $\overline{AA'} \parallel \overline{BB'} \parallel \overline{CC'}$.
- $\overline{AA'} \cong \overline{BB'} \cong \overline{CC'}$.
- $\triangle ABC$ and $\triangle A'B'C'$ have the same orientation.

Example 1: What is the graph of $T_{(7,-4)}(\triangle EFG) = \triangle E'F'G'$?

Notation:

You Try! Using the graph in Example 1, what are the vertices of $\Delta E'F'G'$ if the following translations happen?

A.
$$T_{\langle 6, -7 \rangle} (\triangle EFG) = \triangle E'F'G'$$

B.
$$T_{(11, 2)}(\triangle EFG) = \triangle E'F'G'$$

Example 2: What translation rule maps *STUV* onto *S'T'U'V*?

Composition of Rigid Motions:	
-------------------------------	--

Notation:

Step 1 Translate $\triangle ABC$ left 2 units and up 5 units.

 $(R_{\ell} \circ T_{\langle -2, 5 \rangle}) (\triangle ABC)$

Step 2 Reflect $\triangle A'B'C'$ across line ℓ .

This notation uses a small open circle to indicate a composition of rigid motions on $\triangle ABC$.

Example 3: In learning a new dance, Kyle moves from position A to position B and then to position C. What single transformation describes Kyle's move from position A to position C?

You Try! What is the composition of the transformations written as one transformation?

$$T_{\langle 3, -2 \rangle} \circ T_{\langle 1, -1 \rangle}$$

Theorem 3-1: A translation is a composition of reflections across two parallel lines.

- Both reflection lines are perpendicular to the line containing a preimage point and its corresponding image point.
- The distance between the preimage and the image is twice the distance between the two reflection lines.

If...
$$T(ABC) = A''B''C''$$

 $AA'' = BB'' = CC'' = 2d$

Then...
$$(R_n \circ R_m)(ABC) = A''B''C''$$

3.1-3.5 Guided Notes

3.3 Rotations

Rotation:

A rotation $r_{(x^{\circ}, P)}$ is a transformation that rotates each point in the preimage about a point P, called the center of rotation, by an angle measure of x° , called the angle of rotation. A rotation has these properties:

- The image of P is P' (that is, P' = P).
- For a preimage point A, PA = PA' and $m \angle APA' = x^{\circ}$.

A rotation is a rigid motion, so length and angle measure are preserved. Note that a rotation is counterclockwise for a positive angle measure.

Ordered Pair Rules: Rotations in the Coordinate Plane					
	90° rotation counterclockwise.	180° rotation counterclockwise.	270° rotation counterclockwise.		
	$(x,y)\to (,)$	$(x,y)\to (,)$	$(x,y)\to (,)$		

Example: What is $r_{(90^{\circ}, O)}$ ABCD?

Try It! The vertices of $\triangle XYZ X(-4,7)$, Y(0,8), and Z(2,-1).

What are the vertices of $r_{(180^{\circ},0)}(\Delta XYZ)$?

3.1-3.5 Guided Notes

Theorem 3-2

Any rotation is a composition of reflections across two lines that intersect at the center of rotation.

The angle of rotation is twice the angle formed by the lines of reflection.

If...

Then...

Additional Practice with Rotations

1) rotation 180° about the origin

3) rotation 90° counterclockwise about the origin

5) rotation 90° clockwise about the origin

Write a rule to describe each transformation.

7)

3.1-3.5 Guided Notes	2.1	C	
Reflectional Symmetry: A		5 Symmetry mans the figure onto itse	lf. The line of reflection is
called the		'	
Examples:			
Rotational Symmetry: A ty than 360°.	pe of symmetry that r	naps an image onto its pro	eimage after a rotation of less
Examples:	\geq		
Point Symmetry: A type of	symmetry where an o	object has rotational symr	netry of 180°.
Can you think of capitalize	ed block letters from t	he alphabet that have poi	nt symmetry?
Example 1: What transform	nation(s) will map the	e image onti itself?	
A.		В.	
Example 2: How many line	es of symmetry does a	regular hexagon have?	
Example 3: For what angle A. Equilateral Triangle	es of rotation will the f	figure be mapped onto its B. Parallelogram	elf?
		2.1 4.411010614111	

\

3.1-3.5 Guided Notes