Buying one movie ticket online costs \$16.50, two tickets cost \$30.50, and three tickets cost \$44.50. Assuming that the relationship is linear, write a recursive formula and a function to represent the cost C of n tickets bought online. Give

the domain of the function.

recursive formula: $\alpha_n = \alpha_{n-1} + 14$; $\alpha_1 = 14.50$

function: C(n) = 14n + 2.50 domain: X & {0,1,2,3,...}

d= 14

16.50, 30.50, 44.50

0	11	2	3	
2.5	16.50	30.50	44.5	

The table shows the cost of renting ski equipment at a ski lodge. Write a linear function f for the sequence. Then graph the function.

X	Number of Days Rented	6	1	2	3	4	
tw	Rental Cost (\$)	1	12	17	22	27	

Performance Task: A city sets up 14 rows of chairs for an outdoor concert. Each row has 2 more thairs than the row in front of it.

Part A Write a recursive formula to represent the number of chairs in the nth row.

Part B. Write an explicit formula to represent the number of chairs in the rith row.

Part C Graph the sequence for the first 5 rows.

Part D What linear function represents the ence? Which represents this situation best, near function or one of the formulas you wrote? Explain.

$$d=2$$

$$a_n = 2n + 8$$

d.f(x)=2x+8

a,=10