1-3 Additional Practice

PearsonRealize.com

Midpoint and Distance

1. What is the midpoint formula? $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

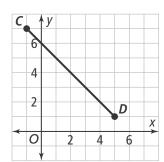
For Exercises 2–5, find the midpoint of each segment with the given endpoints.

2.
$$A(-4, 6)$$
 and $B(10, -10)$ (3, -2)

3.
$$C(-3, -8)$$
 and $D(-6.5, -4.5)$ (-4.75, -6.25)

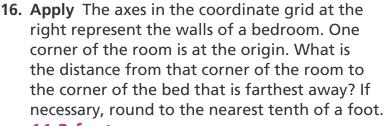
4.
$$E(3, 7)$$
 and $F(-8, -10)$ (-2.5, -1.5)

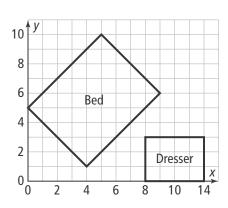
5.
$$G(-6, -13)$$
 and $H(-6.4, -3.8)$ (-6.2, -8.4)


For Exercises 6–9, find the coordinates of each point described in relation to line segment *CD*.

7.
$$\frac{2}{3}$$
 of the way from *D* to *C* (1, 5)

8.
$$\frac{2}{3}$$
 of the way from *C* to *D* **(3, 3)**


9.
$$\frac{1}{3}$$
 of the way from *D* to *C* **(3, 3)**



10. What is the distance formula?
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

For Exercises 11–14, find the distance between each pair of points.

15. Understand If
$$M$$
 is the midpoint of \overline{ST} , write an equation that describes the relationship between ST and MT . $ST = 2(MT)$

11.2 feet