Name:	Period:	Date:

Gigantic Packet of Proofs!

Directions: In proofs 1-3, use the paragraph proof or plan to help you fill in the missing statements and reasons of the two-column proof. In proofs 4-5, use the word bank to help you fill in the missing statements and reasons. In proofs 6-7, there is no paragraph proof or word bank to help.

Use the given paragraph proof to write a two-column proof.

Given: $\angle BAC$ is a right angle. $\angle 1 \cong \angle 3$

Prove: $\angle 2$ and $\angle 3$ are complementary.

Paragraph proof:

Since $\angle BAC$ is a right angle, $m\angle BAC = 90^\circ$ by the definition of a right angle. By the Angle Addition Postulate, $m\angle BAC = m\angle 1 + m\angle 2$. By substitution, $m\angle 1 + m\angle 2 = 90^\circ$. Since $\angle 1 \cong \angle 3$, $m\angle 1 = m\angle 3$ by the definition of congruent angles. Using substitution, $m\angle 3 + m\angle 2 = 90^\circ$. Thus, by the definition of complementary angles, $\angle 2$ and $\angle 3$ are complementary.

Complete the proof. Choose the reasons for statements 3 and 5 from the Word Bank.

Two-column proof:

Statements	Reasons
1. $\angle BAC$ is a right angle. $\angle 1 \cong \angle 3$	1. Given
2. m∠ <i>BAC</i> = 90°	2. Definition of a right angle
3. m∠ <i>BAC</i> = m∠1 + m∠2	3. Angle Addition Postulate
4. m∠1 + m∠2 = 90°	4. Substitution
5. m∠1 = m∠3	5. Definition of @ Angles
6. m∠3 + m∠2 = 90°	6. Substitution
7. ∠2 and ∠3 are complementary	7. Definition of complementary angles

Word Bank	
Substitution	Definition of congruent angles
Angle Addition Postulate	Definition of equality
	(** - 7)

Given: $\overrightarrow{BC} \parallel \overrightarrow{DE}, \overrightarrow{AB} \perp \overrightarrow{BC}$

Prove: $\overrightarrow{AB} \perp \overrightarrow{DE}$

Proof: It is given that $\overrightarrow{BC} \parallel \overrightarrow{DE}$, so $\angle ABC \cong \angle BDE$ by the Corresponding Angles Postulate. It is also given that $\overrightarrow{AB} \perp \overrightarrow{BC}$, so $m\angle ABC = 90^\circ$. By the definition of congruent angles, $m\angle ABC = m\angle BDE$, so $m\angle BDE = 90^\circ$ by the Transitive Property of Equality. By the definition of perpendicular lines $\overrightarrow{AB} \perp \overrightarrow{DE}$.

Use the choices listed below to complete the two-column proof.

Proof:

Statements	Reasons
1. <i>BC</i> ∥ <i>DE</i>	1. Given
$2. \ \angle ABC \cong \angle BDE$	2. Corresponding Angles Postalete
3. AB L BC	3. Given
4. $m \angle ABC = 90^{\circ}$	4. Definition of Perpendicular
5. MLABC = MLBDE	5. Definition of Congruent Angles
6. $m \angle BDE = 90^{\circ}$	6. Transitive Prop. of =
7. $\overrightarrow{AB} \perp \overrightarrow{DE}$	7. Def. of Persendicular lines

Word Bank	
$\overleftarrow{AB} \perp \overleftarrow{DE}$	*If two parallel lines then corresponding angles
$m \angle ABC = m \angle BDE$	are equal.
*If alternate interior angles are equal then the lines are parallel.	*Definition of Perpendicular Lines
	Transitive Property of Equality
*If a transversal is perpendicular to one of two parallel lines then it is perpendicular to the other	$\overrightarrow{AB} \perp \overrightarrow{BC}$

Use the given plan to write a two-column proof.

Given: $m \angle 1 + m \angle 2 = 90^{\circ}$, $m \angle 3 + m \angle 4 = 90^{\circ}$

Prove: $m \angle 1 = m \angle 4$

Plan: Since both pairs of angle measures add to 90°, use substitution to show that the sums of both pairs are equal. Since $\angle 2 \cong \angle 3$ by Vertical Angles Theorem, use substitution again to show that sums of the other pairs are equal. Use the Subtraction Property of Equality to conclude that $m \angle 1 = m \angle 4$.

Complete the proof. Choose the answers from the Word Bank for the missing information in steps 2, 4, 5, and 6.

Proof:

Statements	Reasons
1. m∠1 + m∠2 = 90°	1. Given
2 m23 + m24 = 90	2. Given
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	3. Substitution Property of Equality
4. ∠2 ≅ ∠3	4. Vertical Angles than
5. m22=m23	5. Def. of \approx angles
6. m∠1 + m∠2 = m∠2 + m∠4	6. Substitution
$^{7.}$ m L I = m L H	7. Subtraction Prop. of =

Word Bank	
m∠1 = m∠4	Substitution Property of Equality
m∠2 = m∠3	Definition of Congruent Angles
m∠3 + m∠4 = 90°	Subtraction Property of Equality
	Vertical Angles Theorem
m∠5 + m∠6 = 90°	Addition Property of Equality

Fill in the blanks to complete the two-column proof.

Given: $\angle 1$ and $\angle 2$ are supplementary. $m\angle 1=135^\circ$

Prove: $m\angle 2=45^\circ$. Choose the answers from the Word Bank for the missing information in steps 2, 3, 4, and 5.

Proof:

Statements	Reasons
1. ∠1 and ∠2 are supplementary.	1. Given
2. MLI = 135°	2. Given
	3. Def. of Sylementry Ls
4. 135° + mL2 = 180°	4. Substitution Property
5. m∠2 = 45°	5. Subtraction Prop of =

Word Bank	
m∠2 = 135°	Subtraction Property of Equality
135° + m∠2 = 180°	Given
m∠1 = 135°	Substitution Property
Definition of supplementary angles	Definition of complementary angles

Fill in the two-column proof using the statements and reasons in the word bank.

Given: $\angle 1 \cong \angle 4$

Prove: $m \angle 2 = m \angle 3$

1 2 3/4

Two-column proof:

Statements	Reasons
1. ∠1 ≅ ∠4	1. Given
2. ∠1 and ∠2 are supplementary. ∠3 and ∠4 are supplementary.	2. Linear Pairs are Supplementary
3. ∠2 ≅ ∠3	3. If two angles are supplementary to the same angle then they are congruent.
4. m∠2 = m∠3	4. Definition of Congruent Angles

Word Bank	
$\angle 1$ and $\angle 2$ are supplementary. $\angle 3$ and $\angle 4$ are	If two angles are supplementary to the same angle then
supplementary.	they are congruent.
$m\angle 2 = m\angle 3$	Given
∠1 <u>≅</u> ∠4	Linear Pairs are Supplementary
∠2 ≅ ∠3	Definition of Congruent Angles

Given: $\angle 4 \cong \angle 3$ **Prove:** $m \angle 1 = m \angle 2$

Statements	Reasons
 ∠1 and ∠4 are supplementary, ∠2 and ∠3 are supplementary. 	1. Linear Pairs are Supplementary
2. ∠4 ≅ ∠3	2. Given
3. ∠1 ≅ ∠2	3. Congruent Snylements Thm
4. m∠1 = m∠2	4. Def. of \cong Angles

Given: AB = CD, BC = DE

Prove: C is the midpoint of \overline{AE} .

Statements	Reasons
1. <i>AB</i> = <i>CD</i> , <i>BC</i> = <i>DE</i>	1. Given
2. AB + BC = CD + DE	2. Addition Projecty of =
3. $AB + BC = AC$, $CD + DE = CE$	3. Segment Addition Postulate
4. <i>AC</i> = <i>CE</i>	4. Substitution
5. $\overline{AC} \cong \overline{CE}$	5. Def. of \cong Segments
6. C is the midpoint of \overline{AE} .	6. Det. of a midpoint