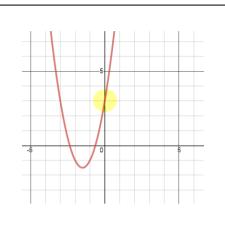
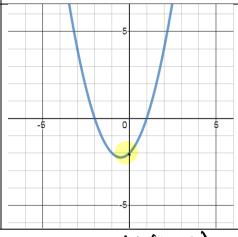
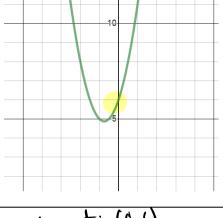

Topic 8.3 – Quadratic Functions in Standard Form


EXAMPLE 1 - Relate c to the Graph of $f(x) = ax^2 + bx + c$


What information does c provide about the graph of $f(x) = ax^2 + bx + c$?



$$f(x) = x^2 + x - 2$$

$$f(x) = 2x^2 + 3x + 6$$

Finding the vertex from Standard Form:

The **standard form of a quadratic function** is $f(x) = ax^2 + bx + c$, where $a \ne 0$. The value c is the y-intercept of the graph.

Axis of symmetry/x-value of vertex: $\chi = \frac{-b}{2a}$

Y-value of the vertex: plug in the x-value to get the y-value

EXAMPLE 2 – Find the vertex of the quadratic in standard form.

Graph
$$f(x) = -0.75x^2 + 3x - 4$$
.

Step 1.

Step 1.
find x-value
$$x = -\frac{b}{2a}$$
 $x = -\frac{3}{2(-0.75)} = \frac{-3}{-1.5} = 2$ $x = 2$

 $y = -0.75(2)^{2} + 3(2) - 4$ y = -0.75(4) + 6 - 4 y = -3 + 6 - 4 = -1Step 2.

Plug x-value un'to get the y-value of revtex.

Step 3.

vertex: (2,-1)

Write as a coordinate


Example 3 - Find the vertex and graph $f(x) = 2x^2 + 8x + 5$


$$x = \frac{-8}{2(2)} = \frac{-8}{4} = -2$$

y-value:
$$y=2(-2)^2+8(-2)+5$$

 $y=2(4)-16+5$
 $y=8-16+5$
 $y=-3$

a=2 > vertical dilation is I

vectex

Example 4 – Convert a Quadratic from Vertex to Standard Form:

$$f(x) = 2(x+3)^2 - 4$$

$$f(x) = 2(x+3)(x+3) - 4$$

f(x)=2(x2+3x+3x+9)-4

f(x)=2x2+6x+6x+18-4

- 1) Expand the binomial.
- 2) FOIL the binomials.
- Distribute into the parenthesis.
- 4) Simplify.

Example 5– Cyndie is standing a platform 24 feet above the pool. She jumps off the platform and her height above the pool can be measured with the function $h(t) = -16t^2 + 8t + 24$, where t is the seconds after she jumged and h is her height over time. point 18

a) What is her maximum height above the water? (y-value of h(t)=-16(0.25)2+8(0.25)+24 rev tex)

N(t)=-1+2+24

N(t)=25

She is 25ft above the water

b) How long does it take her to reach the maximum height? (x-value + the xervex)

$$x = \frac{-b}{2a} = \frac{-8}{2(-16)} = \frac{-8}{-32} = \frac{1}{4}$$

4 sec or 0.25

Example 6- A ball is thrown into the air. The height of the ball, h, over t seconds can be modeled with the equation:

$$h(t) = -t^2 + 8t$$
.

a) How long does it take the ball to reach it's maximum height? (x-value of vertex)

$$x = \frac{-b}{2a} = \frac{-8}{2(-1)} = \frac{-8}{-2} = 4$$
 sec

b) How high does it get? (y-ralue of the retex

You Try!

1) Find the vertex for the equation: $f(x) = x^2 - 4x + 8$

$$x-value = x = \frac{-(-4)}{2(1)} = \frac{4}{2} = 2$$

$$y = 2^2 - 4(2) + 8$$

 $y = 4 - 8 + 8$
 $y = 4$

vertex (2,4)

2) Find the vertex for the equation: $f(x) = -3x^2 - 12x + 1$

$$x = \frac{12}{-3(2)} = \frac{12}{-6} = -2$$

(-3,13)