Algebra 2

Topic 6 Review WS

1. Sketch each graph, showing at least 3 points and its asymptote. Then answer the questions. NC

a.	f(x) =	$-3 \cdot 2^{x+1}$	+4
	J	-	

c.
$$h(x) = 2 \cdot 3^{-(x-4)} - 6$$

Transformations: Reflection across x-axis V. Dilation by S.f. of 3 H. translation left 1

Transformations: Vertical dilation by s.f. of 6 Horizontal translation left 3

Transformations: Reflection across y-axis Vertical dilation by s.f. of 2 H. translation right 4 Vi translation down

1 translation up 4 Domain: $\times \in \mathbb{R}$

y-intercept: (O, 3/4)

x-intervals where h(x) > 0XE (-00, 3)

Range: $f_{(\infty)} \in (-\infty, 4)$

Range: $9(x) \in (0, \infty)$ *x*-intervals where h(x) < 0 $\frac{\times \in (3, \infty)}{\text{Asymptote:}}$

y-intercept:

(0,-2)

End Behavior: as x >0, y(x) >0+ as x -> - 20 g(x) -> 00

y = -6

2. Multiple Choice. Which of the following models an account value, A(t), after t years where the annual percent rate (APR) is 6.7%, the principal is \$3,050, and the account is compounded quarterly?

[A]
$$A(t) = 3,050(1+0.067)^{4t}$$

[B]
$$A(t) = 3,050 \left(1 + \frac{0.67}{4}\right)^{4t}$$

[C]
$$A(t) = 3,050 \left(1 + \frac{0.067}{4}\right)^{t}$$

[D]
$$A(t) = 3,050 \left(1 + \frac{0.067}{4}\right)^{4t}$$

3. Assume that 2,200 students attended IHS in 2014 and 2,450 students attended IHS in 2017. Write the equation of a function $f(x) = a \cdot b^x$ that models the number of students attending IHS, f(x), x years since 2010. Use your equation to find the growth rate, expressed as a percent and rounded to 3 decimals.

(4, 2, 200) + (7, 2450)

$$b^{3} = \frac{2450}{2200}b'$$

$$b = (\frac{2450}{2200})^{\frac{1}{3}}$$

 $b^{3} = \frac{2450}{2200}b^{7}$ $b = (2450)^{3}$ $c = (2450)^{3}$ c = (2450

- **4.** Evaluate each logarithm. *NC*
 - **a.** $\log_8 \frac{1}{64}$

- **b.** $\log_{125} 5$
- - 2 = 1

- c. log 1,000,000
 - 10 = 1,000,000
- **5.** Find the value of each logarithm rounded to three decimal places. *C*
 - $a. \log_3 85$
 - **b.** $\log_{36} 5$ 4.044
 - 0,449

c. $\log_{4.2} 0$

- **6.** Solve the equations below, expressing your answer as a *simplified fraction* or *integer*. *NC*
- **a.** $27^{3x+1} = 81^{x-3}$
- $(3^{3\times +1}) = (3^{4})^{x-3}$ $3^{9x+3} = 3^{4x-12}$

- **b.** $3\log(\frac{4}{x}) = 6$
 - $\log\left(\frac{4}{x}\right) = 2$
 - $10^{2} = \frac{4}{x}$
 - $x = \frac{4}{100}$

- $\mathbf{c.} \log_4 2 + 8x = \log_2 1 4.5$
 - $\frac{1}{2}$ +8x = 0 -4.5
 - 8x = -4.5 0.5
- 7. Graph the logarithms, showing at least two points and its asymptote. Then answer the questions. NC
- **a.** $f(x) = 4\log_2(-(x-6))$
- **b.** $g(x) = \log_5(x+4) 3$

c. $h(x) = -4\log_3(x+2) + 5$

- **End Behavior:**
- $as \times \rightarrow -\infty$, $f(x) \rightarrow \infty$
- **Transformations:**

Reflection across y-axis U. Dilution by s.f. of 4 11. Translation right 6

End Behavior:

- **Transformations:**
- H. translation left 4 V. + ranslation down 3
- **End Behavior:**
- as x > 00, h(x) -> 00 45 x -> -2+, h(x) ->00
- **Transformations:**

Reflection across x-axis V. dilation by s.f. of 4 H. translation left 2 V. translation up 5

a. Assuming only translations were applied, write the equation of g(x).

$$g(x) = 4^{x+3} - 5$$

b. Using properties of inverses, graph $g^{-1}(x)$ on the grid to the right.

c. Using your answer from part (a), find the equation for $g^{-1}(x)$. Verify your equation is accurate by testing points from part (b) into your

y = g(x)

a.
$$\sum_{n=1}^{10} 4(1.3)^{n-1}$$

$$S_{10} = \underbrace{4(1-1.3)^{n-1}}_{1-1.3}$$

b.
$$\sum_{n=1}^{\infty} -2\left(\frac{3}{5}\right)^{n-1}$$

c.
$$\sum_{n=1}^{\infty} 5\left(\frac{7}{4}\right)^{n-1}$$
 Divergent

$$|S_{10} \approx 170.478$$

below. In questions (b) and (c), classify as convergent or divergent.
$$C$$

b.
$$\sum_{n=1}^{\infty} -2\left(\frac{3}{5}\right)^{n-1}$$

$$C = \frac{-2}{1-\frac{3}{5}}$$

10. The half-life of carbon-14 is 5,730 years. This is the amount of time it takes for half of a sample to decay. From a sample of 24 grams of carbon-14, how long will it take until only 3 grams of the sample

$$a_n = 3$$
 $3 = 24 \left(\frac{1}{2}\right)^n$
 $a_n = 3$

the decay. From a sample of 24 grains of carbon-14, now long with it take until only 3 grains of the sample remain?
$$C$$

X Need to know how many half-lives occurred, then multiply by length of half-lives occurred, then

 $C = 3$
 $C = 3$

$$a_i = 2.1$$
; $r = 5 \rightarrow a_n = 2.1(5)^{n-1}$, $n \ge 1$

$$820,312.5 = 2.1(5)^{n-1}$$
 $5^{n-1} = 390,625$
 $\log_5 390,625 = n-1$
 $8 = n-1$
 $n = 9$

1. There are 9 terms total.

$$\begin{array}{c}
8 = n - 1 \\
n = 9
\end{array}$$

12. A hurricane center uses the function $s = 95 \log d + 75$ to relate the wind speed in miles per hour, s, and the distance in miles a hurricane travels, d. How many miles will a hurricane travel with a wind speed of approximately 320 mph? C

d of approximately 320 mph? C

$$320 = 95 \log d + 75$$
 -75
 $245 = 95 \log d$
 95
 $100 = 245$
 $100 = 245$
 $100 = 245$
 $100 = 245$
 $100 = 245$
 $100 = 245$
 $100 = 245$
 $100 = 245$

$$\log d = \frac{245}{15}$$
 $10^{\left(\frac{245}{95}\right)} = d$
 $1d \approx 379.269 \text{ miles}$

Additional Application Problems

13. Darren wants to invest \$4,500 into an account that earns 5% annual interest. Help him see how much each account below would earn after 10 years if it is compounded according to the period listed. C

Compounding Period	Use the Compound Interest Formula	Account Value
Annually	A(1) = 4500 (1 + 0.05) H	A(10)~\$7330.026
Quarterly	A(t) = 4560 (1+ 0.05)4t	A(10) \$ \$ 7396.288
	$A(t) = 4500 \left(1 + \frac{0.05}{12}\right)^{12t}$	A(10)≈ \$ 7411.543
Daily	$A(t) = 4500 \left(1 + \frac{0.05}{365}\right)^{365t}$	A(10)≈ \$7418.992

- 14. A professor was interested in the relationship between time and memory. The professor determined the model $f(t) = t_0 - 15\log(t + 1.1)$ gives the memory score after t months when a student had an initial memory score of t_0 . C
- **a.** Write a model for a student with an initial memory score of 95. $\frac{1}{3} = 95$

b. After how many *years* will the student from part (a) have a memory score of 65? Round to the nearest year. $f(\epsilon) = 65$

b. After how many years will the student from part (a) have a memory score of 65? Round to the nearest year.
$$f(t) = 65$$

$$65 = 95 - 15 \log (t + 1.1)$$

$$-30 = -15 \log (t + 1.1)$$

- 15. The pH of a solution is a measure of its concentration of hydrogen ions. This concentration, written a
- $[H^+]$ and measured in moles per liter, is given by the formula $pH = \log \frac{1}{[H^+]}$. What is the

concentration of hydrogen ions in a liter of vinegar that has a pH level of 2.5? C

16. Mateo invested \$12,000 into an account that earns 4.5% compounded quarterly. If he leaves the account untouched, during which year (since initially investing) will the account double in value? C

$$\frac{1}{2} = (1 + \frac{0.045}{4})^{4}$$

$$2 = (1 + \frac{0.045}{4})^{4}$$

$$\frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$