## **Geometry 2.4 Parallel and Perpendicular Lines**

For 1-2, graph the line  $y_2$  so that it meets the given requirements. Then write the equations for  $y_1$  and  $y_2$ .

**1.**  $y_1 \parallel y_2$  and  $y_2$  passes through (0,3)



Equation for  $y_1$ 

Equation for  $y_2$  \_\_\_\_\_

**2.**  $y_1 \perp y_2$  and  $y_2$  passes through (-2,2)



Equation for  $y_1$ 

Equation for  $y_2$ 

**3.** A parallelogram is a quadrilateral with opposite sides parallel to each other. Prove the figure to the right is a parallelogram by algebraically showing its opposite sides are parallel to each other.



**4.** A right triangle is a triangle that has a right angle. Prove that the triangle below is a right triangle by algebraically showing it has a right angle.



For 5-6, determine if the lines y = f(x) and y = g(x) are parallel using the table of values.

**5.** 

| Х | f(x) | g(x) |
|---|------|------|
| 0 | 20   | 22   |
| 1 | 35   | 37   |
| 2 | 50   | 52   |
| 3 | 65   | 67   |

6

| Х | f(x) | g(x) |
|---|------|------|
| 0 | 5    | 10   |
| 1 | 7    | 15   |
| 2 | 9    | 20   |
| 3 | 11   | 25   |

For 7-10, write the equation of the line that passes through the point and is parallel or perpendicular.

7. Through (-2, -5) and parallel to 
$$y = x + 3$$

**8.** Through (1, -3) and perpendicular to 
$$y = -x$$

**9.** Through (4, 5) and parallel to 
$$y = \frac{1}{4}x - 4$$

**10.** Through (0, -4) and perpendicular to 
$$y = -\frac{3}{2}x + 1$$

**11.** Line m contains (6, 8) and (-1, 2). Line n contains (-1, 5) and (5, y). What is the value of y if line m is perpendicular to line n?