Methods for Solving Quadratics:

Quadratic Formula: gives solutions of quadratic equations in the form $ax^2 + bx + c = 0$ for real values of a, b and c. The guadratic formula is a useful method to find the solutions to any guadratic equations.

$$\chi = -b \pm \sqrt{b^2 - 4ac}$$

Ex. 1: Find the solutions to the equation: $x^2 - 7 = 4x$

1) Bring all terms to o

$$x = -(-4) \pm \sqrt{(-4)^2 - 4(1)(-7)}$$
2) Identify a, b, and c.

value.

$$x = 4 \pm \sqrt{16 + 28}$$
3) Plug values into the complete of the co

- 2) Identify a, b, and c. Be sure to include signs in front of
- 3) Plug values into the quadratic formula.

$$0 = \chi^{2} + 4\chi - 21$$

$$\alpha = 1, \quad b = 4, \quad c = -21$$

$$\chi = -4 \pm \sqrt{(4\eta^{2} - 40)(-21)}$$

$$\chi = -4 \pm \sqrt{16} + 64$$

$$\chi = -4 \pm \sqrt{16} = 3$$

$$\chi = -4 \pm \sqrt{100} = -4 \pm 10$$

$$\chi = -4 \pm \sqrt{100} = -4 \pm 10$$

$$\chi = -4 \pm \sqrt{100} = -4 \pm 10$$

You Try! Find the solutions to the equation: $x^2 - 2x = 24$

$$x^{2}-2x-24=0$$

$$0=1 \quad b=-2 \quad c=-24$$

$$x=2\pm \sqrt{(-2)^{2}-4(1)(-24)}$$

$$x=2\pm \sqrt{4+96} = 2\pm \sqrt{100} = 2\pm 10$$

$$2 \quad 2^{+10} = 6$$

$$x=6,-4$$

Ex. 3: The function shown represents the height of the frog x seconds after it jumps off a rock. How many seconds is the frog in the air before it lands on the ground?

Ex. 3: The function shown represents the height of the frog x seconds after it jumps off a rock. How many seconds is the frog in the air before it lands on the ground?

$$a = -16, \quad b = 10, \quad c = 0.75$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10 \pm \sqrt{100^2 - 4(-10)(a + 3)}$$

$$x = -10$$

The Discriminant indicates the number of real solutions of the equation. The discriminant is the expression $b^2 - 4ac$.

If $b^2 - 4ac > 0$, there are two real solutions. If $b^2 - 4ac = 0$, there is one real solution. If $b^2 - 4ac < 0$, there are no real solutions.

Find the number of solutions for $x^2 - 4x + 3 = 0$

The graph of the related function intersects the x-axis at two points.

Find the number of solutions for $-x^2 - 4x - 4 = 0$

$$b^{2}-4ac$$
 $(-4)^{2}-4(-1)(-4)$
 $16-16=0$
 $0=0$
there is I solution

Find the number of solutions for $x^2 - 4x + 5 = 0$

You Try! Use the discriminant to determine how many real solutions the quadratic has. $-x^2-6x-10=0$

$$(-6)^2 - 4(-1)(-10)$$

$$-4 < 0$$

$$-4 < 0$$

$$No solutions$$