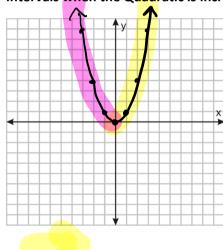

Graph the parent function of a quadratic: $f(x) = x^2$

Vertex: (0,0)

Axis of Symmetry: X=O


Opens: 4P

Domain: $\chi \in (-\omega, \omega)$

Range: $y \in [0, \infty)$

χ	y	
-3	9	
- 2	14	
- 1	١ ١	
0	0	~ rertex
ſ	(
2	4	
3	9	

Intervals when the Quadratic is increasing and decreasing.

Increasing: A function increases if the y-values go up as you read the graph from left to right.

Decreasing: A function decreases if the y-values go down as you read the graph from left to right.

Now let's look at the graph of $f(x) = ax^2$. Notice what happens to the graph as a changes.

- 1) What do you notice? a gincreased, the graph got narrower a decreased (ULac1), the graph got wides
- 2) What happens when a is negative?

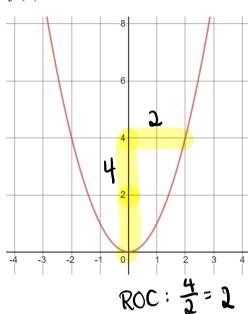
 the graph opens down.
- 3) When is the graph of the function $f(x) = -x^2$ positive and when is it negative?

positive above xaxis

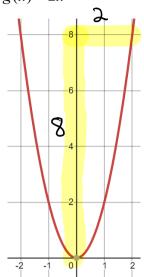
not pos. or neg. at (0,0)

Never positive

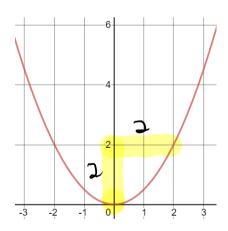
Negative


For all

values


except x=0

Rate of Change: $\frac{x}{x} = \frac{x}{x}$ Let's compare the rate of change over the interval $x \in (0,2)$ for quadratics with different a values.


$$f(x) = x^2$$

$$g(x) = 2x^2$$

$h(x) = \frac{1}{2}x^2$

Which function had the greatest rate of change over the interval $x \in (0,2)$? g(x) had the greatest rate of change